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Machine learning (ML) has been introduced into the medical field as a means to provide diagnostic tools
capable of enhancing accuracy and precision while minimizing laborious tasks that require human
intervention. There is mounting evidence that the technology fueled by ML has the potential to detect and
substantially improve treatment of complex mental disorders such as depression. We developed a
framework capable of detecting depression with minimal human intervention: artificial intelligence
mental evaluation (AiIME). This framework consists of a short human-computer interactive evaluation
that utilizes artificial intelligence, namely deep learning, and can predict whether the participant is
depressed or not with satisfactory performance. Because of its ease of use, this technology can offer a
viable tool for mental health professionals to identify symptoms of depression, thus enabling a faster
preventative intervention. Furthermore, it may alleviate the challenge of observing and interpreting
highly nuanced physiological and behavioral biomarkers of depression by providing a more objective

evaluation.

Public Significance Statement

The current study presents a novel paradigm that uses machine learning (multimodal deep networks)
to detect depression. This framework can function as a screening tool for depression and be integrated
into clinical settings to assist mental health professionals.
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Machine learning (ML), a method of data analysis in which
computers learn to independently modify or adapt their actions
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(e.g., make predictions) to produce more accurate decisions and
results, has emerged as a powerful analytic tool for large and
complex data sets (Marsland, 2011). As such, ML lends itself to
the processing of disease biomarkers and has been implemented in
medical diagnostic tools ranging from the detection and classifi-
cation of tumors (Petricoin & Liotta, 2004; Bocchi, Coppini, Nori,
& Valli, 2004) to providing a differential diagnosis of neurode-
generative diseases with similar presentations (Salvatore et al.,
2014). ML methods have reliably demonstrated an increase in
prediction accuracy when compared with older, more conventional
statistical techniques or physician-based expert systems (Cruz &
Wishart, 2007).

In parallel, ML has been applied to examine affective display
differences exhibited during emotion states, such as facial expres-
sion and vocal prosody, through audio and video-based analyses.
These advances have generated a field of research that has suc-
cessfully used ML techniques, such as support vector machines
(Cohn et al., 2009), regression (Valstar et al., 2013), and neural
networks (L. Yang et al., 2017), for automatic emotion recognition
using audiovisual data (Schuller, Steidl, & Batliner, 2009;
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Burkhardt, Paeschke, Rolfes, Sendlmeier, & Weiss, 2005; Dhall,
Goecke, Joshi, Wagner, & Gedeon, 2013; McKeown, Valstar,
Cowie, Pantic, & Schroder, 2012; Ringeval, Sonderegger, Sauer,
& Lalanne, 2013). Moreover, ML has been extended to investigate
verbal and nonverbal affective abnormalities associated with psy-
chiatric disorders and has shown promise in detecting measurable
differences between those presenting with and without a given
diagnosis (Hamm, Kohler, Gur, & Verma, 2011; P. Wang et al,,
2008; Gratch et al., 2014; Alhanai, Ghassemi, & Glass, 2018). This
is a substantial advancement, given that prior to the advent of ML,
identifying divergences in affect-related behaviors relied exclu-
sively on labor-intensive, rater-based analysis (Gaebel & Wolwer,
1992), which can be susceptible to raters’ personal biases.

ML-based techniques show promise for psychiatric diagnostics
by harnessing observable affect-related behaviors through objec-
tive methods. In fact, observable affect-related behaviors are com-
monly used by mental health professionals to assist in psychiatric
diagnostics, often through unstructured methods that result in
general, qualitative data (e.g., flat or broad affect). ML algorithms’
reliance on quantitative and observable behaviors is therefore
compelling and applicable for clinical use. Unfortunately, the
majority of current algorithms still require some level of human
intervention such as labor-intensive manual labeling or hand clas-
sification of data to extract useful features prior to analysis (Val-
star et al., 2013; Valstar et al., 2014).

We sought to investigate the possibility of developing a method
that combines advanced ML-based techniques in combination with
automated data collection procedures to identify clinical depres-
sion in a demographically diverse population. We chose to begin
this effort with depression for two reasons. First, the prevalence
and impact of depression is staggering and affects millions of
people across the globe. Depression is the leading cause of dis-
ability in the United States for individuals ranging from 15 to 44.3
years of age (Substance Abuse and Mental Health Services Ad-
ministration, 2017). Major depressive disorder, a psychiatric dis-
order characterized by experiencing depressed mood or anhedonia
most of the day nearly every day for a period of 2 weeks or more,
affects upward of 16.2 million American adults annually, roughly
6.7% of the United States population (Substance Abuse and Men-
tal Health Services Administration, 2017). Distress from clinically
elevated depression is often accompanied with suicidal ideation
and attempt (World Health Organization, 2017). Nearly 800,000
individuals worldwide die as the result of suicide each year,
making it the second leading cause of death in individuals 15-29
years of age. Second, verbal and nonverbal affective abnormalities
demonstrated by individuals with depression are well documented
and lend themselves to ML processing. Depressed individuals
possess significant differences in facial expressions (Girard &
Cohn, 2015) and everyday vocabulary use (e.g., absolutist words;
Al-Mosaiwi and Johnstone, 2018) when compared with healthy
individuals. In addition, speaking behaviors and voice acoustic
characteristics (e.g., F, and switching pauses; Yang, Fairbairn, &
Cohn, 2013) have been closely linked to depressive state, recovery
time course from depression (Kuny & Stassen, 1993), and treat-
ment response (Mundt, Snyder, Cannizzaro, Chappie, & Geralts,
2007). This research provides a solid foundation of behavioral
biomarkers that may be used to identify clinically elevated depres-
sion using audiovisual data.

Hence, we designed a web-based evaluation that can be com-
pleted quickly (~5 min), requires no manual labeling, and takes
into account all of the above-mentioned modalities. In addition, we
created a new ML-based algorithm that leverages and extends the
behaviorally relevant findings to identify depression using natu-
ralistic audiovisual data. This comprehensive methodology (arti-
ficial intelligence mental evaluation, AiME) was developed to
minimize human intervention, thereby enhancing feasibility, scal-
ability, and potential applications in clinical settings.

Method

Participants

We collected data from 671 participants who performed a
human-computer interactive evaluation. Participants were re-
cruited through Amazon Mechanical Turk and were compensated
for their time. The evaluation (completed at participants’ homes or
their preferred location) was primarily composed of interview
questions where participants were recorded by a webcam and a
microphone while they responded to questions relating to their
mental well-being. The evaluation also contained an anonymous
demographics questionnaire (age, sex, ethnicity, etc.) as well as a
brief, multiple-choice, mental health questionnaire to provide ad-
ditional data and ground-truth validation. Participants were asked
to confirm that recording requirements (lighting, camera angle,
etc.) were met (see Appendix).

The evaluation took approximately 5 minutes, and data from the
demographics questionnaire, video responses, and mental health
questionnaires were stored and accessed in accordance with Health
Insurance Portability and Accountability Act compliance stan-
dards. All participants were from the United States. We performed
automated validations to ensure adequate data quality (e.g., each
video contained a single clearly recognizable face and voice).
Videos of particularly poor visual and/or audio quality were dis-
carded as judged case by case. The final reported participant
numbers are after the cleanse (i.e., final data included for training
and testing). The resulting sample of participants was 57.97%
female, 41.73% male, and 0.30% other; 73.77% White, 10.13%
African American, 8.35% Hispanic/Latino, 4.47% Asian/Pacific
Islander, 0.59% Native American, 0.45% Middle Eastern, and
2.24% other; 3.43% in the age range of 15-19 years, 23.99% in
20-24 years, 22.95% in 25-29 years, 33.38% in 30-39 years,
9.69% in 40—49 years, 4.62% in 50-59 years, and 1.94% in 60
years and above.

This study did not seek institutional review board approval
because the data in the current study were collected as part of
product development by Textsavvyapp, Inc. This type of research
without academic affiliation has precedence in industry; nonethe-
less, the product has been subsequently adopted as a part of an
institutional review board—approved clinical trial.

Measures

Video questions. Participants responded vocally to eight
questions regarding current mental well-being for 15-60 s per
question (e.g., “How have you been feeling lately?”). Similarly,
participants responded vocally to five additional questions regard-
ing past and current treatment history for 3-30 s per question (e.g.,
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“Has a mental health professional diagnosed you with depression
in the past?”). During these questions, video and audio data were
collected. Participant’s behavioral data from the first eight ques-
tions recorded via video and audio as well as speech content (what
was said) were used for prediction. The full list of these interview
questions is included in Appendix.

Depression. Participants completed the Patient Health Ques-
tionnaire (PHQ-9) (Kroenke, Spitzer, & Williams, 2001), a nine-
item self-report measure that assesses depression on a 4-point scale
(from O = not at all to 3 = nearly every day). Total scores range
from 0 to 27, with higher scores denoting a greater endorsement of
depressive symptoms. Scores from PHQ-9 were used as the
“ground truth” for the training and assessment of models.

Statistical Approach

We developed a multimodal deep learning model that used
video data, audio data, and speech content from participants’
responses as well as demographics and other metadata. These data
were used as adjacent inputs to the model to predict depression in
two ways: (a) treating depression as a continuous problem and thus
using regression (predicting PHQ-9 scores between 0 and 27
against the true PHQ-9 values); and (b) performing binary classi-
fication on whether participants were likely to be considered
clinically depressed (using a cutoff value on the PHQ-9 scores that
is used in frequent clinical practice).

Data processing involved the following steps: (1) Video data
were subsampled to eight frames per second, cropped to partici-
pants’ face (using Google Cloud Vision) and then downsampled to
128 X 128 pixels (Figure 1A) and finally analyzed using an
architecture resembling ResNet (He, Zhang, Ren, & Sun, 2016);
(b) audio data from the microphone were downsampled to 80 Hz,
and 22 features were extracted over the entire time trace. These
features included 13 Mel-frequency cepstral representations as
well as other features such as spectral roll-off, entropy, and so
forth (Figure 1A); and (c) speech content was automatically tran-
scribed using Google Cloud Speech service and transformed to
word representation vectors using Global Vectors (GloVe 6B)
(Pennington, Socher, & Manning, 2014)—and subsequently used
as another input to the model (Figure 1A). These data streams were
passed through long short-term memory (LSTM) recurrent neural
network (Hochreiter & Schmidhuber, 1997) layers because of the
time-varying nature of the inputs. Lastly, the model combined
these inputs with a dense layer containing demographic informa-
tion and other metadata (for each video, the metadata vector
consisted of the total duration of the video, word count, unique
word count, and word density defined as the number of words per
second), and prediction occurred after the application of dense
layers (Figure 1B).

We applied data augmentation, a commonly used method that
simultaneously increases the number of input data points as well as
reduces the potential for overfitting the model (i.e., making the
outcome invariant to geometric and color properties of individual
images; Wang & Perez, 2017). In particular—in addition to pro-
viding raw video to the model—we mirrored the video (geometric)
and adjusted color contrast (color). Lastly, the scores from the
PHQ-9 were used as the ground truth. Computations were imple-
mented using Keras (TensorFlow backend). We report our findings
from one regression model (that also allowed us to compare our

results with those from prior work in the literature) as well as two
binary classification models for which a PHQ-9 score of 10 was
used as a threshold for depression.

The regression model was trained on 537 exams using a mean
squared error loss function and an independent set of 134 exams
was left for testing (true PHQ-9 scores for 671 exams: 7.95 * 6.48,
mean * SD; for 537 exams in training set = 7.98 = 6.50; for 134
exams in test set = 7.89 * 6.42). Similarly, the classification
models were trained on 365 exams (balanced; i.e., equal number of
depressed vs. nondepressed exams) using a binary cross-entropy
loss function and an independent set of 91 exams was left for
testing (for the test set, the base rate for the binary classification
variable was 33.58%, i.e., the percentages of exams that exceeded
the PHQ-9 threshold; true PHQ-9 scores: 4.02 * 2.82 for PHQ-
9 < 10 and 15.53 = 4.26 for PHQ-9 =10 classes, mean *= SD).

It is important that, for classification problems, training occurs
on a balanced data set, that is, equal number of examples in each
class, to prevent training a naive model that always predicts the
majority class in practice. Thus, to balance our training data set, we
used data from all depressed participants and an equal number of
exams from the nondepressed category (this resulted in discarding
215 exams). The test set, on the other hand, was not balanced and
was sampled from the original distribution of exams to ensure the
sample is a true representation of the population distribution. In
both cases, the 80/20 split for the training and testing data was
done randomly and to ensure there were enough data in each group
to minimize variances in both parameter estimates and perfor-
mance metrics. The group assignments were done based on par-
ticipant, and all model manipulations—training the algorithm,
model tuning, and optimization—were done solely on the training
data (and blind to the test set that was left only for testing
performance metrics). As an additional precaution, random group
assignment was performed before each isolated experiment (as
opposed to fixed assignment over the duration of the study) to
ensure that model tuning was agnostic to the particular composi-
tion of the evaluated test set. In addition to the holdout method
described, we performed 10-fold cross-validation (with validation
and test sets) to eliminate the possibility of overfitting to a single
holdout test set and obtain more accurate performance estimates
(see Results).

As a further precaution against overfitting to the training data, we
used early stopping (Yao, Rosasco, & Caponnetto, 2007), a regular-
ization method that limits the number of training iterations. In the
regression model, the output of the model (predicted y) was compared
against the true PHQ-9 scores. In the classification model, the output
of the model (predicted y values were between 0 and 1) was rounded
to construct a binary vector consisting of ones (depressed) and zeros
(nondepressed) and was compared against the true binarized PHQ-9
scores. The second classification model was different from the first in
that we also performed hyperparameter optimization (hyperparam-
eters are human-predefined parameters as opposed to parameters
learned by the model during training) using random search (Bergstra
& Bengio, 2012) and we used bidirectional LSTM (BiLSTM) in lieu
of LSTM.

Results

We implemented a regression model in which the model outputs
were trained against the PHQ-9 scores (0-27); we used a scaled
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Figure 1. Inputs and the architecture of the network used for classification. Example inputs from three different
modalities (video, audio, text). Top, Video data consisted of frames whose dimensions were in 128 X 128 pixels
in width and height, and three in depth (corresponding to the RGB color channels). Depending on the total length
of the video, the number of video frames per sample also varied (eight frames per second). Middle, Audio data,
similar to video data, consisted of frames (80 per second) that were transformed into 22 features (see text),
including short-term power representations (mel-frequency cepstrum). Bottom, Text data were analyzed using
GloVe representation with a word vector size of 200 (see text), thus leading to input dimensions of number of
words X 200 (copyright 2019 by Textsavvyapp, Inc. Adapted with permission) (A). An overview of the network
demonstrating how different data streams are processed individually and combined (B). See the online article for
the color version of this figure.
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(by 27) sigmoid activation function, and a mean squared error loss
function (i.e., the model would minimize the mean squared error
between the true and predicted PHQ-9 scores). Mean absolute error
(MAE) and root mean square error (RMSE) were used as mea-

. 1
sures for model evaluation: (a) MAE = =271 |Yyue — Ypredicreals

(b) RMSE = \/ﬁE?’:l O'irue = Ypredicrea) ™ Which also allowed for
comparisons with previously described models (see Table 1). Al-
though the use of different scales for training (Yang et al., 2017 used
PHQ-8 scores) can introduce confounds for performance compari-
sons, we scaled our model’s MAE and RMSE values to obtain error
percentages. We found our model fared better compared to previous
models (Yang et al., 2017), although the comparison is indirect
because of the PHQ-8 versus PHQ-9 difference. Direct comparisons
of our model performance on other data sets (Cohn et al., 2017)
warrants further investigation but is beyond the scope of this article.

Curiously we found that when regression models were trained on
male and female participants separately they performed remarkably
better. This might be due to the fact that the underlying distribution of
the PHQ-9 scores was significantly different between female (7, [3,
13]; median, [25th, 75th]%) and male (2, [5, 10]; median [25th,
75th]%) participants (p = 0.00024; Wilcoxon rank-sum test). This
difference in model performance between male and female partici-
pants had also been previously reported (Yang et al., 2017). We also
noted that the performance metrics during testing were slightly better
than training metrics. A possible explanation for this is that we used

Table 1

the dropout regularization method during training to prevent overfit-
ting. These dropout layers are later deactivated during testing to allow
the model full access to intermediate features and may result in better
performance during testing.

It is worth noting that we treated audio-visual response data
from individual questions (of the eight total questions within the
evaluation) as independent observations. However, the ultimate
goal is to aggregate these question-level estimates into a single
estimate of the patient. To achieve this, we performed two differ-
ent analyses: (a) we took the average model predictions from all
eight questions and computed the model performance by compar-
ing that score against the true PHQ-9 value (MAE test: 4.83 ¢,
4.82 d; RMSE test: 6.05 ¢, 6.10 &); and (b) we built a simple
neural network with two dense layers that used the predictions
from eight questions as the input and performed regression to
predict the true single PHQ-9 score. Consistent with our prior
framework, we had independent sets of training and testing data
(MAE test: 459 ?, 437 &; RMSE test: 590 ¢, 5.52 &). This
analysis is critical, given that although behavioral manifestations
of depression may change from moment to moment, the underly-
ing level of depression may not.

Initially model selection was determined by the epoch that
resulted in the best performance on the test set. Although reason-
able at first blush, this introduces the possibility of choosing a
model overfit to the test data. To alleviate this, we later performed

Summary of Various Measures Used for the Evaluation of Model Performance

Model 1, Performance metrics (regression error), all data

Train MAE Train RMSE

Test MAE Test RMSE

5.27 (19.52%) 6.68 (24.74%)

5.12 (18.96%) 6.35 (23.52%)

Regression model trained and tested on female participants

4.03 (14.93%) 5.25 (19.44%)

3.73 (13.81%) 4.91 (18.19%)

Regression model trained and tested on male participants

3.46 (12.81%) 4.80 (17.78%) 3.55 (13.15%) 4.52 (16.74%)
Model 2, Performance metrics (classification), balanced model (1 = 0.41)
Accuracy (PPV) precision NPV Sensitivity Specificity F-1 score

68.02, 95% CI
[67.32, 68.75] 70.88

68.61,95% CI
[66.36, 70.81] 80.46

67.61,95% CI

[66.32, 68.28] 73.46

68.59,95% CI
[64.57, 72.87] 86.81

67.46, 95% CI
[62.59, 72.60] 87.77

67.66, 95% CI
[65.77, 68.50] 71.15

90% specific model T = 0.63

70.16 82.93 49.93 89.95 62.33
90% sensitive model T = 0.28
61.40 56.96 89.79 33.63 69.70

Note. PPV = positive predictive value; NPV = negative predictive value. For the first model measures, the numbers inside parentheses represent the
percentage of error with respect to the range of possible values (27 for PHQ-9 scores); thus, lower numbers indicate better performance. Percentage error
is provided to aid in comparison to prior studies such as Yang et al., 2017, which used a PHQ-8 scale having a range of possible values of 24 points, thereby
otherwise confounding direct comparison of MAE and RMSE. Values from the second model are reported as bootstrapping results (0jeraions = 10,000)
representing the estimated value and 95% confidence intervals (Nepochs = 25) and were computed during the test phase (i.e., unseen data). Underlined values
in bold indicate the highest values obtained from different model epochs. Parameter 7 represents the threshold at which the predictions were considered

positive. Model 1 (regression; all data) training: Ny icipanis = 937 N,

female) training: Ny, icipants = 3125 Nexamples = 2496; Model 1 testing: N,
224, Nexamples = 1,792; Model 1 testing: Npavicipants = 995 Nexampes
N =91, N = 728.

participants examples

= 4,296; testing: Np,icipanis = 1345 N

examples

participants

= 440; Model 2 training: Np,qicipans = 363, N

examples = 1,072; Model 1 (regression;
= 616; Model 1 (regression; male) training: Ny, icipants =
= 2,920; Model 2 testing:

=77;N

examples

examples
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10-fold cross-validation with both validation and test sets. Here
model selection was guided by performance on the validation set
with final model performance quantified by the MAE on the
independent test set: (a) validation MAE (4.72, 95% confidence
interval [CI; 4.50, 4.94]), test MAE (4.80, 95% CI [4.25, 5.35]),
female; and (b) validation MAE (4.82, 95% CI [4.70, 4.95]), test
MAE (4.88, 95% CI [4.48, 5.25]), male. This procedure is not only
useful for preventing overfitting to the test set during model
selection but also results in more accurate estimates of model
performance.

Although depression is a continuous phenomenon, it is frequent
clinical practice to use cutoffs to dichotomize this continuous
measure. One way to achieve this is to apply thresholds on the
output of our regression models. Alternatively, we used a classi-
fication model that was trained against binarized labels (whether
the participant was depressed or not based on applying a threshold
on the PHQ-9 scores; for a detailed description see the Statistical

A Female Only Model, Test Data

25+
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Il
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Approach section). We used various metrics (Fabian et al., 2011)
to evaluate the model performance at each epoch (each epoch
representing a single full presentation of the data set to the model
during training). First, we quantified the receiver-operating char-
acteristics curve and the area under that curve—common measures
of model performance in classification (Huang & Ling, 2005)—for
each model as well as individual epochs within a model (see
Figure 2). The model converged and its performance remained
stable for many epochs during which it successfully classified
depression labels well above chance (see Figure 2). The final
model selection is commonly left to the experimenter to choose the
epoch with the highest desired performance metric.

Moreover, we constructed the contingency table (confusion
matrix) of the number of true positives (TP; correctly identified as
depressed by the model), true negatives (TN; correctly identified
as nondepressed by the model), false positives (FP; nondepressed

B Male Only Model, Test Data
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Figure 2. Classification achieved performances well above chance level. Scatter plots are the regression model
predictions for the PHQ-9 scores versus the true PHQ-9 scores in the test data. Individual data points are the
prediction results combined over 8 questions per participant within each gender group in the test data from a
representative epoch (A and B). Receiver operating characteristics (ROC) curve obtained from 25 representative
test epochs from a model (each line represents a different epoch) indicating that classification was done above
chance level (gray diagonal line) (C). The distribution of the area under the ROC curve (AUC) values (mean =
SD = 0.75 = 0.01) for the curves shown in C (D). Gray dashed vertical line indicates chance level. These metrics
are derived from predictions made during the test phase (i.e., unseen data). See the online article for the color

version of this figure.



n or one of its allied publishers.

ghted by the American Psychological Associa

This document is copyri

°r and is not to be disseminated broadly.

This article is intended solely for the personal use of the individua

DETECTING DEPRESSION USING MACHINE LEARNING 7

individuals that were identified as depressed by the model), and
false negatives (FN; depressed individuals that were identified as
nondepressed by the model). These values were used to compute
the following metrics to gauge the model performance (for a
detailed description, see Table 1):

TP+TN . o .
(a) accuracy: wpvirprrn. (b) positive predictive value; preci-

sion): %, (c) negative predictive value: %\,, (d) sensitivity
(recall): iy A (e) specificity: —IN_ " and (f) F-1 score:
o TPERN P Y IN+FP :

According to the utilized metrics, the described models exhib-
ited satisfactory (above chance) performance levels. The second
classification model (random search) outperformed the first model
(data not shown) and achieved stable performance across all mea-
sures (see Table 1). Two representative epochs reached high spec-
ificity and sensitivity values (87.77% and 86.81%, respectively),
and in fact, it is possible to adjust the threshold value (7) at which
a prediction is considered positive to achieve higher levels of
specificity or sensitivity (see Table 1). It has been argued that it is
important to report diagnostic test results at different thresholds,
particularly for binary classification problems, because the clinical
relevance and optimal threshold values will likely depend on the
type of diagnostics performed (Mallett, Halligan, Thompson, Col-
lins, & Altman, 2012).

Discussion

In this article we have introduced a novel methodology, which
combines a brief evaluation and ML techniques to detect depres-
sion. Our model takes advantage of the fact that there are signif-
icant differences in facial expressions, tone of voice, and vocab-
ulary used by individuals with depression compared to the
nondepressed population. Our results suggest it is possible to
detect depression (or a depressive state) with methods that require
minimal human intervention both in terms of data collection and
labeling. It must be noted that despite having achieved satisfactory
performance levels, there are some limitations that will be detailed
below.

One limitation of the current approach is that because the
self-report exam is conducted at specific moments in time, the
behavioral results might be the individual’s state-dependent affect
(a short-term emotional influence caused by a recent event), rather
than the long-term affective characteristics associated with depres-
sion. The exam is brief and accessible, however, and thus can be
taken multiple times—for example at periodic time intervals—
which can mitigate the state-dependent affect. Completing the
evaluation at periodic time intervals may also offer two additional
benefits: a longitudinal assessment of the depressive state, and
insights into subtle depressive symptom changes over time.

Another limitation—a common caveat of supervised learning
methods—is that to train the model to perform a regression or
classification task, data need to be labeled (e.g., using a continuous
measure of depression or depressed vs. not depressed classes). In
our algorithm, the ground truth is determined based on the self-
reported, and therefore subjective, PHQ-9 scores that are not fully
accurate in depression prediction. Nonetheless, it is possible to
expand upon the current method, and utilize labels provided by
psychiatrists and mental health specialists, for example from Struc-
tured Clinical Interview for D Diagnostic and Statistical Manual

of Mental Disorders-5 interviews, to obtain potentially better and
more accurate performance measures. Moreover, by training the
model against a scale like PHQ-9, which is shown to correlate with
depression risk and severity (Kroenke et al., 2001), the model is
transitively learning to associate time-dependent behavioral bio-
markers with depression risk and severity. Furthermore, prediction
loss against PHQ-9 is reduced and smoothed by averaging across
random batches of predictions prior to model parameter updates in
such a way that the model will not practically consider the PHQ-9
scale as unadulterated truth but rather a rough gauge of depression
severity. Lastly, as with any method that lacks a direct physician-
patient interaction, the models presented here (like PHQ-9) can be
seen only as screening or triage tools and cannot yet offer diag-
noses by themselves.

Neural networks are often considered black box methods be-
cause of obscure inner workings with features and parameters not
explicitly guided by human hands. The models described herein
are no different, although new research is showing indications of
increasing interpretability of results by using methods such as
activation map visualization (Yosinski, Clune, Nguyen, Fuchs, &
Lipson, 2015; Zintgraf, Cohen, Adel, & Welling, 2017; Chen et al.,
2018) to understand what influences network decisions.

Another limitation of the study is that the data were not col-
lected in a clinical setting. In some respects this is deleterious, for
example because of a lack of personal guidance of study partici-
pants by laboratory technicians or physicians, and an inability to
ensure maximum recording quality and consistency. In other re-
spects it is useful, for example to train a robust network invariant
to implementation details like camera, microphone, lighting qual-
ity, and so forth. Another related concern, which is beyond the
scope of this article, is that a clinical population may exhibit
meaningfully different characteristics compared to a nonclinical
population, even at similar PHQ-9 levels.

Taken together, the current study presents a proof of concept for
detecting depression severity and risk using ML techniques on
behavioral data. Although trained from PHQ-9 scores, ML models
have the potential to improve and eventually provide more re-
fined performance levels that go above and beyond current
questionnaire-based methods. This is particularly notable because
behavioral analysis is potentially less susceptible to report bias
often found in self-reported data. Additionally, output from the
penultimate model layer, an n-dimensional vector resulting from
preceding dense layers of n units, may be interpreted as a quali-
tative descriptor of the subject input in n-space, and therefore
analyzed and compared with clustering techniques (e.g., k-means
or t-SNE). The resultant clusters may inform future diagnostic
criteria and improve our understanding of depression and myriad
other ailments detectable from behavioral biomarkers beyond the
capabilities of a traditional questionnaire in clinical settings.

Neurotechnologies (e.g., chronic brain implants) have emerged
as viable options that use electrophysiological biomarkers to treat
psychiatric diseases such as depression. Artificial intelligence
mental evaluation could be used along with these neuromodulation
techniques—such as the application of deep brain stimulation and
transcranial magnetic stimulation to treat pharmaco-resistant de-
pression (Bewernick et al., 2010; George et al., 2000)—to provide
finer precision progress tracking for recipients of novel treatment
as well as eventually correlate behavioral changes with brain
activity already being gathered in the course of such treatments.
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The combination of precision and objectivity with machine
learning methodology may offer a chance at enhancing our ability
to track and triage individuals suffering depression. Additionally,
the ability to automate and thus scale depression diagnostic data
collection may support mental health professionals with easier
access to robust patient mental health insights.
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Appendix

Details of the Human-Computer Interactive Evaluation

The first eight questions that participants responded to were
related to their current mental well-being and were included for
model training. These questions were as follows: (a) How have
you been feeling lately? (b) Tell me how your sleep has been
lately. (c) What else is going on today? (d) What are you looking
forward to in the near future? (e) What’s been frustrating you
lately? (f) What do you think is causing your problems? (g) How
would you describe the impact your life has on the world around
you? (h) Whom do you wish you had a better relationship with,
and what would make it better?

Participants also responded to five additional questions regard-
ing past and current treatment history: (a) Are you currently
treating depression with a mental health professional? (b) Are you
currently treating anxiety with a mental health professional? (c)
Has a mental health professional diagnosed you with depression in

the past? (d) Has a mental health professional diagnosed you with
anxiety in the past? and (e) Have you ever been treated for
substance abuse or dependence?

Ideal recording conditions for participants were defined as such:
(a) face within the dashed green lines (safe area), (b) no facial
accessories (hats, glasses, etc.), (c) participant directly facing the
camera, (d) participant’s entire head in the frame, (e) face well lit
from the front, and (f) minimized background distractions and
noise. They were also asked to avoid backlighting and facing the
camera at an angle.
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